Molecular Mechanism of Inhibition of the Mitochondrial Carnitine/Acylcarnitine Transporter by Omeprazole Revealed by Proteoliposome Assay, Mutagenesis and Bioinformatics

نویسندگان

  • Annamaria Tonazzi
  • Ivano Eberini
  • Cesare Indiveri
چکیده

The effect of omeprazole on the mitochondrial carnitine/acylcarnitine transporter has been studied in proteoliposomes. Externally added omeprazole inhibited the carnitine/carnitine antiport catalysed by the transporter. The inhibition was partially reversed by DTE indicating that it was caused by the covalent reaction of omeprazole with Cys residue(s). Inhibition of the C-less mutant transporter indicated also the occurrence of an alternative non-covalent mechanism. The IC50 of the inhibition of the WT and the C-less CACT by omeprazole were 5.4 µM and 29 µM, respectively. Inhibition kinetics showed non competitive inhibition of the WT and competitive inhibition of the C-less. The presence of carnitine or acylcarnitines during the incubation of the proteoliposomes with omeprazole increased the inhibition. Using site-directed Cys mutants it was demonstrated that C283 and C136 were essential for covalent inhibition. Molecular docking of omeprazole with CACT indicated the formation of both covalent interactions with C136 and C283 and non-covalent interactions in agreement with the experimental data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of carnitine acylcarnitine translocase system of heart mitochondria.

Mersalyl inhibited the respiration of heart mitochondria under conditions that required the transport of (-)-carnitine and acyl(-)-carnitines. The exchange of external carnitine and acylcarnitines for intramitochondrial carnitine was also inhibited by mersalyl and 1 mM mersalyl proved suitable for the inhibitor-stop assay of carnitine acylcarnitine translocase. The carnitine-carnitine and (-)-c...

متن کامل

Changes in the subcellular distribution of free carnitine and its acyl derivatives in diabetic rat hearts following treatment with L-carnitine.

Carnitine deficiency has been demonstrated in diabetic hearts, and it is also well known that L-carnitine administration has a beneficial effect on cardiac function. Carnitine treatment would be expected to reduce the accumulation of long-chain acylcarnitine. However, many reports have shown that myocardial long-chain acylcarnitine levels were increased following treatment with L-carnitine in w...

متن کامل

Site-directed mutagenesis of the His residues of the rat mitochondrial carnitine/acylcarnitine carrier: implications for the role of His-29 in the transport pathway.

The mitochondrial carnitine/acylcarnitine carrier (CAC) of Rattus norvegicus contains two His, His-29 and His-205. Only the first residue is conserved in all the members of the CAC subfamily and is positioned before the first of the three conserved motifs. In the homology model of CAC, His-29 is located in H1 close to the bottom of the central cavity. His-205 is the first amino acid of H5 and i...

متن کامل

Nutritional and Hormonal Regulation of Citrate and Carnitine/Acylcarnitine Transporters: Two Mitochondrial Carriers Involved in Fatty Acid Metabolism

The transport of solutes across the inner mitochondrial membrane is catalyzed by a family of nuclear-encoded membrane-embedded proteins called mitochondrial carriers (MCs). The citrate carrier (CiC) and the carnitine/acylcarnitine transporter (CACT) are two members of the MCs family involved in fatty acid metabolism. By conveying acetyl-coenzyme A, in the form of citrate, from the mitochondria ...

متن کامل

Phytanic acid and pristanic acid are oxidized by sequential peroxisomal and mitochondrial reactions in cultured fibroblasts.

The relationship between peroxisomal and mitochondrial oxidation of the methyl branched fatty acids, phytanic acid and pristanic acid, was studied in normal and mutant human skin fibroblasts with established enzyme deficiencies. Tandem mass spectrometry was used for analysis of the acylcarnitine intermediates. In normal cells, 4,8-dimethylnonanoylcarnitine (C11:0) and 2,6-dimethylheptanoylcarni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013